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1   Introduction 

Background 

One of the primary missions of the United States Army is to maintain a high 
state of readiness so it can meet any challenges to national defense. To accom- 
plish this mission, the Army is constantly training soldiers for battle on over 12 
million acres of Department of Defense (DoD) lands. The Army is also charged 
with the stewardship of the lands on which it conducts that training. The Army 
uses Land Condition Trend Analysis (LCTA) as a means to inventory and moni- 
tor natural resources. LCTA was developed by the U.S. Army Construction En- 
gineering Research Laboratory (CERL) under the sponsorship of the U.S. Army 
Engineering and Housing Support Center (USAEHSC). It uses standardized 
methods to collect, analyze, and report natural resources data (Diersing, Shaw, 
and Tazik 1992) as part of the Army's Integrated Training and Management 
(ITAM) program. An informal review of installation ITAM personnel indicated 
an interest in estimating plant diversity using LCTA data and modeling changes 
in plant diversity that result from alternative land uses. 

When using a data set like LCTA to model the environment and make manage- 
ment decisions based on that modeling effort, it stands to reason that good, accu- 
rate data should be used. The assumption that a data set used for any mathe- 
matical or computer modeling is error-free is an underlying premise of 
theoretical modeling. However, assumptions of error-free data and models usu- 
ally do not hold true in the real world. Error is a natural property of surveys and 
modeling and as such, error should be taken into account when developing any 

type of model. 

Objective 

The objective of this project was to develop and test an error-budget model for 
the population dynamics of plant communities using standard data from the 
LCTA program at the White Sands Missile Range, New Mexico. Once developed, 
this error-budget model can in turn be used for a number of other purposes such 
as data correction, model evaluation, quality control, and management decision- 

making. 
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Approach 

The fact that some degree of uncertainty exists in the data used to make man- 
agement decisions has been recognized by Army installations. Uncertainty and 
a wide range of probable answers make land management subject to broad in- 
terpretation. Natural resource personnel have identified the need for some 
method to distinguish usable data from unusable data in computer models used 
to help them in making management decisions. One such pre-existing computer 
model was in place at White Sands Missile Range (Cao et al. 2000). The authors 
looked at the data set used for this model for its potential as a test case and 
chose to use the model as a test case for implementation of a mathematical error- 
budget model. This error-budget model was developed with input obtained 
through literature review, professional discussions, and available field data. 

Scope 

The error-budget model detailed in this report is designed to improve the use of 
plant population models. The results of this study are specifically applicable 
only to the White Sands Missile Range plant population model. By managing for 
plant communities, DoD has the opportunity to conserve multiple species simul- 
taneously. Plant communities also provide a useful basis on which to under- 
stand and manage the natural communities that support military training and 
other land uses. 

Within the context of the larger DoD mission, the use of an error-budget model 
allows investigators to identify errors in methodology, sampling, data collection, 
and recording, modeling, and analysis. This process will allow natural resource 
personnel to make more informed decisions as to what courses of action are ap- 
propriate for a given management scenario. Better management of natural re- 
sources at the installation level will lead to reduced restrictions on the military 
mission. 

Mode of Technology Transfer 

The information in this report will be provided to Army personnel responsible for 
assisting with natural resource management issues. The information will also 
be provided to organizations responsible for developing and refining natural re- 
source conservation methodologies through hard copy reports and through the 
CERL web site (www.cecer.army.mil). 
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The error budget for the plant population model included in this report is part of 
a larger research effort that is developing protocols and tools to account for un- 
certainty in natural resources modeling efforts and decisionmaking processes. 
This broader research effort involves developing error budgets for a range of 
natural resources models as a way of evaluating the uncertainty analysis tools 

and protocols. 
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2   Error-Budget Modeling 

Surveys of plant populations are an integral part of natural resource manage- 
ment. When a survey of a population is completed, the results of the survey are 
used by decisionmakers to make quantitative statements about the population 
being studied. This quantitative information helps managers make decisions or 
perform actions that will affect that population. Errors in these statements can 
lead to erroneous decisions and actions that have the potential to cause substan- 
tial losses to the species the natural resource managers are charged with pro- 
tecting. Thus, these errors should be carefully studied before committing time 
and resources to any management project. An error-budget model is used to 
trace the sources of error and their effects on the quantitative statements that 
are made using sample data collected in the field. The importance of an error- 
budget model cannot be overstated when dealing with natural resources. 

First, the error-budget model evaluates the quantitative statements made from a 
survey. Given all the errors, the error-budget model can tell if the statements 
made are valid or invalid. A statement is valid only if its error is within certain 
limits. If a statement's error does not fall between the accepted parameters, that 
statement will usually provide little useful information. Second, the error- 
budget model can guide survey decisions. Using error sensitivity analysis, all 
types of error sources can be tested to determine their effects on the final state- 
ment. Knowing the effect each source of error has on a statement, we can tailor 
a survey effort to control those error sources that contribute the most to the final 
error. This is done based on the sensitivity of the error sources. In this way we 
may obtain maximum accuracy with minimum cost. Third, an error-budget 
model provides the information that can be used for error correction. To correct 
errors, we must first know the sources of the errors. Errors emanating from dif- 
ferent sources may require different procedures to correct them. Using error de- 
composition, we can determine the major causes of the errors. Figure 1 shows 
the basic components of an error-budget model. 
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Error Budget Model for Plant Populations 

error free system: 
true system state 
mathematical 
models 

system with noise: 
inexact state 
estimation models 

exact data   )     ^^«»"-y^*"j (model evaluation) (quality control) (data correction ] 

Figure 1. A conceptual model of an error budget for a plant population model. 

Error Sources 

Errors are classified into two basic categories: system error and survey error. 
Distinctions between these two errors are based on their sources. System error 
is a natural character of the system being modeled. It is determined by the sys- 
tem itself. There are two types of system errors: demographic noise and envi- 
ronmental noise (Gotelli 1998). Demographic noise (or within-individual vari- 
ability) is the variation between individuals who are apparently identical but 
have different life spans and produce different numbers of offspring. Stochastic 
models are typically used to investigate the consequences of demographic noise. 
Environmental noise is so termed because of the fact that changes in the envi- 
ronment vary unpredictably through time. These changes affect individuals in 
different ways and at different times. The theory of stochastic process can be 
used to handle both types of system error. 

Survey error is the deviation of any survey value from the true value. Survey 
errors are generally divided into two types: sampling errors and nonsampling 
errors. Sampling errors inherent in the survey design result from the conscious 
choice to study a subset rather than the population as a whole. Efforts to control 
sampling error are grounded in a well-developed theory, as are the formulas and 



10 ERDC/CERLTR-00-12 

random selection techniques suitable to a particular problem that falls within 
the context of the theory. Sampling errors are not the result of mistakes per se, 
but mistakes in judgment when designing a sample may result in larger errors. 

Nonsampling errors encompass all the other things that contribute to survey er- 
rors. Nonsampling errors are often thought of as being due entirely to mistakes 
and deficiencies during the development and execution of the survey procedures. 
These errors are said to arise from wrongly conceived definitions, imperfections 
in the tabulation plans, misspecification errors, misclassification errors, and so 
on. A perfect design would be free of nonsampling errors. The following is a list 

of some error sources: 

1. System error. This error is controlled by the system itself. The survey usually 
has little to do with it. Choosing appropriate theoretical models is essential to 
the modeling of the system errors. System errors include environmental noise 
and demographic noise. 

2. Survey error. Survey error consists of sampling error and nonsampling error. 
a. Sampling error. Survey estimates are subject to sampling error because only 

a subset of the population is measured. The cause of the sampling error is 
due to the heterogeneity of the population. This error is determined by the 
population distribution and sampling design. 

b. Nonsampling errors include modeling errors, measurement errors, and other 
errors. 
i.    Modeling errors. 

• Simple models. When simple mathematical models study a com- 
plicated population, investigators have only an approximate de- 
scription of the population. For example, this type of error occurs 
when a linear model is used to approximate a nonlinear popula- 
tion. 

• Parameterization error. Parameters in the models are usually 
created by estimation. When estimated parameters are used, the 
results from the model may be quite different from those that re- 
sult from theoretical parameters. 

• Projection errors. These errors include prediction error and recur- 
sion error. Prediction errors are those errors that occur when we 
use current model-based information to make a prediction about 
an unknown future. Recursion error is the error that is com- 
pounded by recursive use of models with error. 

• Misspecification errors. These errors occur when the model or 
model parameters are misspecified. 

ii.   Measurement errors. As the name implies, measurement errors refer to 
the error incurred when the recorded value measured on a study variable 
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differs from the true value. This error occurs during the data collection 
stage. 
• Instrument error. Tools for recording the values of study variables 

usually have limited precision. These tools may-give inaccurate 
readings. 

• Observer's error. Observers with different backgrounds and 
training levels will report data with differing levels of accuracy. 

• Temporal and spatial errors. These errors occur when the study 
variable changes with time and place. For example, vegetation 
has seasonal changes. 

• Mistakes or recording errors. Errors of this type occur when re- 
searchers make mistakes reading instruments or recording the 
data. Misclassification of data is also considered a recording error. 

iii. Other errors. 
• Computation errors. These errors can be avoided with the accu- 

racy of computations made by modern computers. 
• Errors due to catastrophe. These errors include lost or destroyed 

data sampling units. 
• Human errors. These errors include typing and editing errors, 

gaps in knowledge, subjective errors, and so on. 

Error Propagation Method 

The following section (pp 11 through 20) is reprinted from Forest Ecology and 
Management, Vol 71; George Gertner, Xiangchi Cao, and Huirong Zhu; "A qual- 
ity assessment of a Weibull based growth projection system;" pp 235-250; 1995, 
with permission from Elsevier Science. 

In developing an error budget for an inventory/survey system, the first step was 
to select an appropriate method for determining the effects of errors in the 
model. The method used was the error propagation method. Error propagation 
has been used to estimate prediction variances in several models. Gertner (1987, 
1988) used this method to determine the prediction variances of STEMS 
(Belcher, Holdaway, and Brand 1982), a distance-independent growth projection 
model for the north-central region of the United States. An error propagation 
method was also used to develop some very simple error budgets for STEMS 
(Gertner 1990a). Mowrer and Frayer (1986) and Mowrer (1988) used error 
propagation to estimate prediction variances of several stand-level growth mod- 
els. In addition, Gertner (1990b) and Gertner and Kohl (1992) used error propa- 
gation techniques to assess different inventory systems. 
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There were a number of reasons why the error propagation method was used for 
developing the error budget: 

• An error budget developed from error propagation is computationally effi- 
cient. Using a crude error propagation method to estimate final predic- 
tion variance, Gertner (1987,1988) has shown that results comparable to 
those of the crude Monte Carlo method can be obtained at only a fraction 
of the computational cost. Error budgets based on error propagation will 
have similar computational efficiency. 

• Except for testing purposes, high-quality independent data are not neces- 
sary for the construction of an error budget based on error propagation. 
This is true because error propagation methods determine the effect of er- 
rors on a model based on the initial properties ofthat model. Therefore, 
there is no need to use additional independent data. 

• Once appropriate error propagation procedures are incorporated into a 
multi-component model, error budgets can be generated on-line and the 
prediction quality can be assessed routinely. 

• During a simulation run, the bias and variance of each function in a 
model can be output regularly. This practice allows for constant moni- 
toring of the accumulation of biases and variances. 

To develop error budgets, the error propagation equations for accounting bias, 
variance, and covariance approximations were extended from those used by 
Gertner and Mowrer. This was necessary due to the complexities of the com- 
bined monitoring-projection system. Extension was also necessitated by the 
need for very detailed error budgets to conduct the general quality assessments. 
Since there is concern with the potential problems of model curvature and the 
resulting biases due to said curvature (Gertner 1991), the assessment was con- 
ducted using a second-order Taylor series. The propagation equations were de- 
veloped to give rise to the biases, variances, and covariances of each component 
of the model's parameters and predictions through the system. Below is the 
theoretical development of the error propagation equations used in developing 
the error budgets. 

Assuming an exact function f is used to make predictions: 

Y = f(B,X) 

Where Yis a prediction made with the function, X = (Xi; X,, ..., Xm) is a vector of 
input variables, and B = (bp b2, ..., bm) is a vector of known parameters. X is 
usually assumed to be error-free.   Now suppose instead of being error-free, the 
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j-th component of X, X, has random error ej (i.e., K = xj + e^ where e^ are inde- 
pendently distributed with mean 0 and variance V(e.). Then, the predicted Y 
also has error due to the errors of X. This error can be estimated by Taylor se- 
ries expansion. 

Taylor series expansion method 

Assume any vector function involved has the Taylor series expansion representa- 
tion up to the second order: 

(1) u = F(t) = F(0+^(t-t0) 
at 

+^-to)T!S}(t-t0)+o(|t-t0|
3), 

öt'dt 

where   u = 

'iO 

vusy 

, t = 

rti\ 

\SJ 

, tT is the transpose of t, 

9F(t0) 
atT 

at, 

^s(tp) 

v   *• 

3tn 

at. 

r & 

atatT 

52/(t0) a2/(t0) 
Stl^tn 

d2fM 
ÖtnÖtn 

(t"t0) 
T 92F(t0) 

3tT3tx (t-t0) = 

1   J   atatx {   o) 

Ct-t )
T9

 
Fs(tp)rt-t) 1   °; atTatx K   o) 

If T is a random vector and 8 is a random error vector with E[e] = 0, then 
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(2)      U-s = F(T) = F(T0) + ^p^(T-T0) 

+^(T-T0)
T^|^(T-T0) + Op(|T-T0 |3). 

If E[T] = T is true, then from Equation (2) the following can be obtained: 

(3) E[u] = E[F(T)]«F(T0) + iE u    °;  5tTatx l     °; 

F(T0)+- 

r
Trace[^m^ 

1  ötdtT     T 

_    ra
2Fs(T0)v Trace[—^—2-ST] 

Assuming 8 is independent of T, then 

(4)     Eu=E£+Cov[F(T)] 

^(T-TJ(T-TJT(^V 
_ 3F(T0)     r3F(T0)T 

Denote  X^ = E[(A - E[A]) (B - E[B])T and EA = E[(A - E[A]) (A - E[A])T ] = 

Cov[A] for any random vectors A and B. If there are errors in the variables, for 
example, if the input vector, instead of T, is actually measured as x, that pos- 

sesses a bias in T: Bias[x] = E[x-T] = E[x] - TQ, then the actual explanatory vec- 
tor of variables, 

(5) v = F(r) + e = e + F(T0) + ^p^(r-T0) 

+2L(r"To)T^i^(r"T°)+0p(|T"T°l)3 

has a bias in U. 
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(6) Bias[v] = E[v-U]~^^Bias[r] 
at 

1 
+ — 

2 

Trace[B ,f' (^o) (£r + Bias[r]Bias[r]T -ET)] 
atat 

Trace[d ^*(To) (2r + Bias[rjBias[r]T -ST)] 
otot 

Since 

(7) E[v] = E[F(r)]-F(T0) + ^^E[r-T0] 

Trace[ d'^7°
) E[(r - T0) (r - T0 )T ]] 

1 
+ — 

2 
TKce[a2^To)E[(T - T0) (r - T0)

T ]] 
otdt 

the covariance matrix becomes 

(8) Ev = Ee+Cov[F(r)] 

« Ee + E[^p^(r - T0 - Bias[r]) (r -T0 - Bias[r])T(^p^)T] 

,aF(T0)       9F(T0)T 

Error evaluation for nonlinear regression system 

Assuming the input-output system is: 
(9) Y = f(B,X) + £, 

:    and Y = where X = 

'BO 

vXny lYs, 

are respectively the vectors of input and output variables, 

B 

vBm, 

is the parameter vector, s is the random error vector which is independent of 

(B, X) and satisfies E[e] = 0. 
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Since the vector function f(B,X) is non-linear, it is often difficult to calculate the 
mean and covariance matrix for the output Y, even if it is known that E[X] = %, 
E[B]= ß, 

(   _2 

Cov[X,X] = E[(X-^)(X-^)T] = Ex = 
°Xi        '"'"'      °XiXn 

V^XnXi      '"'■>       ^"Xn   J 

Cov[B,B]=EB, Cov[s,e] = Ie, and Cov[B,X] = ZBX. However, a second-order Taylor 
series expansion can be used to approximate the covariance matrix for the out- 
put Y. Define, for i = 1, ..., s 

«f = W,£), 

JiX — " ax 

m        3BT 3Ä        '    '       85, 
;(#£) 

«    J 

(^ 

. T   32fi(/?,<r) _ 
:YY "■ axaxT " 'iXX 

d%(ß,Z) d%(ß,$) 
3x,3x,    »•■•»    3X13X„ 

32f,(>^)   ..'.    a2f8(>,g) 

.. T   a2f,(^^) 
'iXB 3X3B1 

3X„3Z, 

a2f,(/?,£) 

V 
^2 

3X„3X„ 

3X.35,     »-»     3X,35m 

3X^5,     '    '     3X„3Z?m 

r^2 

.. T    32f,(^,0 
'iBB 3B3B1 

35,35, 

a2f.(>,g) 
35„35, 

d2fj(ß,€) 
dBidBm 

32f.(>,£) 
35„35„ 
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and denote: 

A(B,X) = MaxiJiki [| Xk -&\,\ B} - ß, |,| £k |]. 

The second order Taylor series expansion of f is: 

(10) f,.(B,X) = f* + (X-^)Vi;+/i;T(B-y9) + i[(X-^)T/^T(X-^) 

+ 2(X-^)Tf;B
T(B-y9) + (B-^)Tf;B

T(B-y9)] + Op(A3(B,X)). 

From Equation (10) the following approximation can be obtained: 

(11) ^.=£[Yi] = JE[fi(B,X)] = ^/]-f*+J&[X-^]Tf; +fnE[B-ß] 

+ l£[(X-^Tf;x
T(X-^ + 2(X-^)Tf;B

T(B-y5) + (B-/?)Tf;B
T(B-y5)] 

2 

= t; + -(Trace[CTEx ] + 2 Trace[f^TZXB ] + Trace [f*w%]). 

Similarly, 

(12) <TYIYJ = Cov[Yi,Yj] = E[Yi,Yj]-/7,/7. 

88 °elEj +
fi*X   SX fjX +fi*B   SBX fjX + fjB   SBX fiX + fiB   EB fjB. 

3 
In the calculations, all terms of the order E[A (B,X)] or higher were omitted from 

4 2 2^ 
the assessment. Also, since E[A (B,X)] - E[A (B,X)] > 0, the term involving 

products of traces of the two covariance matrices, which has the order of 

E[A2(B,X)]2 < E[A4(B,X)], were also omitted. 

Because there can be errors in the actual input x and estimated parameter b, 

with E[x] = % + Bias[x], E[b] =p + Bias[b], Cov[x,x] = 2^, Cov[b,b] = Eb, and 

Cov[b,x] = Ibx, the actual output should be: 

(13) y=f(b,x) + s 

Substituting (B,X) with (b,x) into Equation (2) and taking the expectation, the 
3 

following is obtained (as above, omit all terms of the order E[A ] where A = 

Max[A(B,X), A(b,x)]): 
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(14)    E[yi] = E[fi(b,x)] + E[£i] = f*+5m5[x]Tf: + f;TÄas[b] 

+|(Trace[CT(Zx+Bias[x]Bias[x]T)] 

+ 2 Trace[4B
T(Zbx + Bias[b] Bias[x]T)] 

+ Trace[f^,T(Zb +Bias[b] Bias[b]T)], 

(15)     Bias[yi] = E[yi]-i7i « Bias[x]Tf; +f*B
T   Bias[b] 

+^(Trace[f^T(Ex + Bias[x] Bias[x]T -EJ] 

+ 2Trace[fi;B
T(Xbx + Bias[b]Bias[xf -EBX)] 

+ Trace[f^B (Eb + Bias[b] Bias1" -EB)]). 

2 2 2 2 
The covariance between y} and y. is (note that E[A]    < E[A ] and E[A ]   < 

E[A]E[A3] so E[A] E[A2] < E[A3]) 

(16)     <7yiyj =E[yi,yj]-E[yi]E[yj] 

~ Gaq +'iX   ^x *jX + *iB   ^bx IjX +*jB   ^bx *iX + *iB   ^b *jB 

In an iterating system hke the inventory system, the output serves as the input 
for the next year. To evaluate the transition error, the following covariance be- 
tween b and y is needed, Sby = Cov[b,y], which is calculated from: 

(17)     CovlXyj] = E[byJ - E[b] E[yJ « Sbx £ + Sbf.; . 
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Error transition in iterative system 

In the development of the iterative system, it was assumed that the models were 
properly specified and calibrated, such that the Bias [b] = 0 and E [b] = ß. At the 
beginning, it was assumed that there were only random measurement errors in 
the initial input x<0) = 3T, i.e., Bias[x(0)]=0 and E[x<0)] = if'. Then for the initial 
input x<0) and theoretical parameter B = ß (non-random constant), the output is: 

(18) X!" = f(ß,x<0)) + 6(1) 

and for the same initial input but estimated parameter b, the output becomes: 

(19) x(1) = f(b,x(0)) + £
(1) 

Assuming the data set used to estimate the parameter is independent of x<0> and 
-(0) Cov[b, x(0)] = Z(^ = 0, the bias is as follows: 

(20)    Bias[x,(1)] = E[x,(,) -X^]^Trace[4°>TZb]. 

It can be seen that the bias in the output is created in a one-step transition. For 

a  well  fitted  model,  it  can  be  expected  that   f^   = —'     ' T— or  Eb  is 

sufficiently small, so the bias can be negligible. But for the model with large Xb 

it is necessary to consider the effects of the bias on the future projections since it 
will use the current output as the next input. The k-th actual output is: 

(21) x(k+1)=f(b,x(k)) + *(k+1). 

The theoretical output is: 

(22) X(k+1)=f(Ax(k)) + f(k+1) 
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The bias is approximately equal to: 

<k+1)i    r:r„ <k+1>i   Erv^'i^DioorvMl1^ (23)     Bias[xi
(k+u] = E[xi

(K+u]-E[Xru]«Bias[xw]1f^ + 

-Trace[f4yT(E(
x

k) +Bias[x(k)]Bias[x(k)]T -S^)] 
2 

+ Trace[f«TI<k>f«TSb] 

where Zf, Zx°, E^ are calculated through 

(24) of = Cov[x<k> xf>]« a« + f£> I™ £'> 

, f(k-l) y (k-1) f(k-l)  , f(k-1) y(k-l) Wk-l)     f (k-1) y   f(k-1) 
+ IiBT    ^bx    rjX     +1

JB
T
   ^bx    XiX     "'"V    ^b^B    ' 

(25) a» = Cov[XSk)Xf] 

~ astej + T
ixT   ^X     XjX     + V    ^b TjB    ' 

and 

(26)     Covtb.x^^Sr^ + ^fS' -i) 

At the first step, since E^ = 0, these terms are simplified as 

(27) ^)-<+^^)fS) + fSEbfg)-<, 

(28) Cov[b,xS,>]«Zbfg). 

Further steps are deduced by the iterate algorithms. In this way the error in- 
crease can be approximated in each step. 

Misclassification 

Situations in which discrete variables are measured with error are called mis- 
classifications. Classification is the process of dividing objects or items into mu- 
tually exclusive groups, such that the members of each group are as "close" as 
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possible to one another, and different groups are as "far" as possible from one 
another. The distance is measured with respect to specific variable(s) or proper- 
ties you are trying to predict. In the visible world, objects are characterized by 
their properties. These properties are usually measured by discrete variables or 
categorized continuous variables. Based on their measures, objects are classified 
into classes. In an error-free world, every object belongs to its right class. In the 
real world, however, objects may be measured with error and placed into wrong 
classes. These objects are considered to be misclassified. Misclassification does 
not change the total number of objects or items, but it changes the distribution of 
objects among the classes. For example, let O = (ov ...,o10) be the set of 10 ob- 
jects, P = (pv...,pk) be the k properties of each object in O, and C = (cv c2, c3) be 
the set of 3 classes. Without error, the class set is C = { { ov o5}, { o2, o3, o9, oj, 
{ o4, o6, o7, o8}}. When the objects are measured with error, we may have the class 
set C = {{ o6, o7, oj, { ov o2, o3}, { o4, o6, o8, o9}}. 

There are many causes of misclassification, such as inaccurate measurements of 
objects, incomplete information about the objects, or human mistakes. The re- 
sults of a classification are used to make statements about the objects being 
studied. They can also provide information for decisionmaking. Misclassifica- 
tion errors can lead to an incorrect decision, thereby causing substantial losses. 
Thus, classification errors should be carefully studied. 

Errors in measurement not only cause larger variance, they also may produce 
bias in the results (Gertner, Cao, and Zhu 1995). Methods of dealing with meas- 
urement errors have been proposed and successfully used in applications like 
error propagation (Gelb et al. 1974; Gertner, Cao, and Zhu 1995) and error ap- 
proximation (Gertner 1987). These methods however, cannot be applied in in- 
stances of misclassification because of its property as a closed system. The prob- 
lem of misclassification has been considered from the different viewpoint by 
many investigators. To adjust for misclassification, Tenebein (1979) proposed a 
double sampling scheme for binomial data. Chen (1979, 1989) gave a review of 
methods for misclassified categorical data and the maximum likelihood estima- 
tion for loglinear models. Geng (1989), York (1992), and Viana (1994) applied 
Bayesian estimation methods to the problem of misclassification and incomplete 
data. In this study, we will discuss two approaches to modeling misclassifica- 
tion: likelihood function methods and Bayesian estimation methods. We will 
apply these methods to the estimation of biodiversity with misclassifications. 

Likelihood function method 

In some systems, objects are distributed in theoretic patterns. The distribution 
of objects in these systems can be described precisely in a mathematical fashion. 
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Also, when data or information are not sufficient to make statistical conclusions 
about the distribution of the objects studied, assumptions of theoretic distribu- 
tions must be made. Among all the theoretic distribution functions, we find that 
the beta function has the highest flexibility to model a wide variety of distribu- 
tion types. 

Magnussen and Boyle (1995) use a beta function as an a-priori Likelihood func- 
tion to represent the most probable species abundance distributions (MOPSAD). 
Shannon and Simpson indices are calculated by using MOPSAD. The method of 
using MOPSAD considers the variations due to sampling. Based on this model, 
we propose a similar approach for estimating diversity indices with misclassifca- 

tion. 

Suppose we have the following beta function, (also called a likelihood function) 
as a species abundance distribution. 

(29)     L(ps\a,ß) = Pr
,x(l'-ps)

ß-1/B<ia,ß) 

L(ps I a, ß) is the likelihood of species s having a relative ps. a and ß are two pa- 
rameters of the beta function. B(a, ß) is the complete beta function of F(a) 
r(ß)/T(a+ß). With different combinations of the a and ß values, the likelihood 
function Lip) gives different types of curves. Figure 2 displays four typical types 
of MOPSAD priori for plant communities, which are called inverse J-shaped, J- 
shaped, bell shaped, and flat priori by Magnussen and Boyle (1995). The inverse 
J-shaped distribution usually represents communities in which there are a lot of 
rare species and very few dominating species. In contrast, the J-shaped curves 
illustrate a situation in which the communities are dominated by a few principal 
species. It is unlikely one would find many rare species in these instances. The 
bell-shaped species distribution appears in many Montane temperate forests. In 
these forests the two extremes (dominated entirely by rare species and domi- 
nated by only a few common species) are rare. The flat priori distribution repre- 
sents an even distribution of species. 
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(a) Inverse J-shaped /.(p,|0.5, 3.0), (b) J-shaped L(pß.O, 0.5), (c) bell-shaped i.(p,|2.0,2.0), and (d) a flat priori 
4P.I1.0,1.0). 
Figure 2. Four typical types of species abundance distributions. 

In this study, we use a Shannon index as an example of the error analysis of 
plant diversity. A Shannon index crystallizes both species richness and species 
evenness into a single number (Shannon and Weaver 1949). The value of the 
Shannon index is determined by both the numbers of species and species distri- 
butions. The following is the formula for the Shannon index. 

(30)    H = -^Pixlog(Pi), 

H is the Shannon index, p{ is the relative abundance of species i, and s is the to- 
tal number of species. 

The expected Shannon index for a plant community with a beta distribution rep- 
resenting MOPSAD is found by summing all possible relative species abun- 
dance's (0 < ps < 1) with each summoned given a weight equal to its likelihood 
L{p). Magnussen and Boyle (1995) give the conditional expectation of the Shan- 
non index. 
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(3,)    m«.ß)-i'-p-xP
h*?')*I<p-)*- Jo *L{ps)dps 

J\-p>V-Ps)M*^PsWPs 
B(a,ß)xa/(a + ß) 

Jo ps x L(ps)dps = a /(a + ß)   is the mean species abundance for the chosen 

MOPSAD and log is the natural log function. 

Based on Equation (31), we give the following the conditional variance of E{H I a, 

ß): 
(32)      Var(H\a,ß) = llK-psx\og(ps)x^-E(H\a,ß)fxL(ps)dPs 

Without misclassification error, Equations (31) and (32) give the expectation and 
variance of Shannon index (Equation 30). Figure 3 shows the expected Shannon 
index with a and ß ranged from 0.5 to 10. 

Misclassification can occur for many reasons in a plant species survey. The ma- 
jor sources of species misclassification are incorrectly identifying species, re- 
cording in the wrong catalogue, miscoding species, or using poor quality speci- 
men. Incorrectly identifying species is related to weather, season, and human 
background on plant study. With the guidance of experts, this error can be very 
small.  Recording errors occur very often among species with similar codes such 
INDEX 

2.56 

9.90 

6.77 

3.63 

ALPHA 3.63 
0.50 0.50 

Figure 3. The expected Shannon index with alpha and beta ranged from 0.5 to 10. 
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as ABCD1 and ABCD2. When there are many species with similar species codes 
in one plot, the recording errors can be very large, contributing the most to the 
total misclassification. Miscoding species happens usually at data entry. Incor- 
rectly typing a code results in a "new species." This error can alter the Shannon 
index significantly. Specimens of unknown species are often collected from the 
field for further identification. If the specimens are not handled properly, or are 
stored for too long, accurate identification becomes difficult. 

If only misclassification is considered, the error in absolute species abundance is 
linear in relation to the error in relative species abundance. This is because the 
population is a closed system when only misclassification error is considered. 
That is to say, misclassification does not change the total population; it only 
changes the species distributions. The error for the total population due to mis- 
classification is zeros. Therefore, error in relative species abundance is linear to 
the error in absolute species abundance. 

Let ps be the relative abundance of species s without misclassification, and ps' be 
the relative abundance of species s with misclassification and es be the misclassi- 
fication error in relative species abundance. We have 

(33)     p;=Ps + es 

where ps is beta distributed. Because the population is a closed system, ps' must 
be also beta distributed. This property makes it difficult to find a distribution 
for the error term es. Misclassification actually just shifts the beta distribution 
from Lipt I a, ß) to Lip^ I a, /?'), where a and ß are the parameters of beta function 
without misclassification, and a and ß' are the parameters of beta function with 
misclassification. Instead of finding the distribution for the error term es, we 
look for the relationship between the error and distribution shift. For example, 
when we say 20% misclassification error in species abundance, we imply that the 
difference of area between the L(p51 a, ß) and L(p^ I a, ß") curves is 20%. In gen- 
eral, we have 

(34)       \\\L{ps\a,ß)-L{P;\a\ß')\psdps_d0i 

l\PsL(Ps\
a>ß)dPs 

where d is the misclassification error as a percentage. Thus, the conditional ex- 
pectation of Shannon index E(H I d) is calculated from the sample curves of (a, ß' 

I d). The bias and variance due to misclassification are given by 
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(35)     bias{H) = E(H\a,ß)-E{H\d) 

Var(H) = Var{H\a,ß) + Var{H\d) 

where E(H I a, ß) and E(H I d) are the expectation of the Shannon index without 

misclassification and with d% input misclassification, respectively. Similarly for 

variance Varffl I a, ß) and Var(H I d). 

A C program was written to model the errors of the Shannon index due to mis- 

classification. The program ran on a LENA SUPERCOMPUTER of the National 

Center for Supercomputing Applications (NCSA) in Champaign, Illinois. In the 

simulation, we took (a, ß) in the likelihood function as (1.0, 1.0), (2.0, 2.0), (3.0, 

0.5), and (0.5, 3.0) for flat priori, bell-shaped, J-shaped, and inverse J-shaped 

curves respectively. The results from the program are used to generate the ta- 

bles discussed in the following paragraphs. 

Tables 1 through 4 show the bias and variance of the Shannon index for the four 

typical types of species abundance distributions. In Table 1 the estimation of the 

Shannon index is calculated based on Equations (31) and (32), which is the case 

without misclassification. The error in Table 1 is mainly due to the natural 

variation of species distribution, which can be used to determine sampling de- 

sign. The bias and error in Tables 2 through 4 only count for the misclassifica- 

tion of two input error limits of 10% and 20%. Comparing Tables 1 and 2, we can 

see that the random misclassification does not contribute much to the variance, 

but it does produce bias even if the input data is unbiased. 

Table 2 shows the bias and variance of the Shannon index due to random mis- 

classification. From this table we can see that different species distributions 

have different sensitivities to misclassifications. The flat priori and bell shaped 

distributions have the most resistance to misclassifications. With 10% input 

misclassification, the bias is about 1.75%, part of which may due to rounding er- 

ror in the computation of the complete beta function B (a, ß). With larger input 

error (20%), misclassification causes about 6.77% bias in the Shannon index. 

One of the reasons for the lower sensitivity of misclassification in the flat priori 

and bell shaped distributions is that the chances of incorrectly classifying rare 

species as common species and vice versa are relatively equal. In other words, 

the effects of misclassification are canceled out by each other. In the J-shaped 

case, the chances of incorrectly classifying rare species as common species are 

less than that of incorrectly classifying common species as rare species because 
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there are a few rare species in a community dominated by common species. Mis- 
classification may create "new species" or increase the evenness of species distri- 
bution. This causes systematic increase of the Shannon index. With 10% input 
misclassification, the Shannon index increases about 5%. With 20% misclassi- 
fied, the Shannon index increases 11%. In contrast with the inverse J-shaped 
case, the Shannon index decreases with misclassification. The Shannon index 
decreases 4% with 10% input error and 18% with 20% input error. In the in- 
verse J-shaped case, because there are many rare species and very few domi- 
nating species, it is more likely to overlook some rare species. This will reduce 
the number of species and causes the Shannon index to decrease. 

Tables 3 and 4 give the bias and variance of the Shannon index due to system- 
atic misclassification. As an example, we suppose the bias of input error is lin- 
ear to its Shannon index, E(H I d) = E(H \ a, ß) + w * E(H I d). As shown in Tables 
3 and 4, both the bias and variance of the Shannon index are larger with sys- 
tematic misclassification. Table 3 illustrates that more common species are mis- 
classified as rare species or species are misidentified as "new species." That is, 
the misclassification increases the evenness of species distribution or number of 
species. This causes the Shannon index to increase. Table 4 demonstrates that 
more rare species are misclassified as common species. This drops the evenness 
of species distribution and causes a decrease in the Shannon index. 

Table 1. Shannon index without misclassification. 

Model flat priori bell-shaped J-shaped Inverse J-shaped 

mean 0.5 0.5833 0.1388 1.4132 

variance 0.0461 0.0257 0.0165 0.0723 

Error1 (%) 42.8945 27.4938 92.59 60.1770 

Error (%) = (standard deviation)/(true index)* 100 

Table 2. Bias and variance of Shannon index due to random misclassification. 

Model Flat priori Bell-shaped J-shaped Inverse J-shaped 

Input error 10% 20% 10% 20% 10% 20% 10% 20% 

Mean 0.5088 0.5338 0.5885 0.608 0.1458 0.1553 1.347 1.1529 

Variance 0.0022 0.0095 0.002 0.0095 0.0001 0.0003 0.0711 0.0818 

Error (%) 9.4453 19.5184 7.7545 16.6964 6.5929 12.4139 18.8735 20.2347 

Bias 0.0088 0.0338 0.0052 0.0247 0.007 0.0165 -0.0662 -0.2603 

Bias (%) 1.7573 6.7682 0.8895 4.2423 5.0707 11.9189 -4.6878 -18.4224 
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Table 3. Bias and variance of Shannon index due to weighted misclassification of common 
species as rare species. 

Model Flat priori Bell-shaped J-shaped Inverse J-shaped 

Input error 10% 20% 10% 20% 10% 20% 10% 20% 

Mean 0.5597 0.6406 0.6473 0.7297 0.1604 0.1864 1.4816 1.3834 

Variance 0.0027 0.0137 0.0025 0.0137 0.0001 0.0004 0.0861 0.1197 

Error (%) 10.3899 23.4221 8.53 20.0357 7.2522 15.0208 20.7608 24.484 

Bias 0.0597 0.1406 0.064 0.1464 0.0216 0.0476 0.0684 -0.0298 

Bias (%) 11.933 28.1219 10.9784 25.0907 15.5778 34.3027 4.8434 -2.1069 . 

Table 4. Bias and variance of Shannon index due to weighted misclassification of rare species 
as common species. 

Model Flat priori Bell-shaped J-shaped Inverse J-shaped 

Input error 10% 20% 10% 20% 10% 20% 10% 20% 

Mean 0.463 0.4484 0.5355 0.5108 0.1327 0.1305 1.2257 0.9684 

Variance 0.0018 0.0067 0.0017 0.0067 0.0001 0.0002 0.0589 0.0577 

Error (%) 8.5953 16.3955 7.0566 14.025 5.9996 10.4277 17.1749 16.9972 

Bias -0.037 -0.0516 -0.0478 -0.0725 -0.0061 -0.0083 -0.1875 -0.4448 

Bias (%) -7.4009 -10.3147 -8.1906 -12.4365 -4.3857 -5.9881 -13.2659 -31.4748 

Bayesian estimation method 

A basic assumption of the method of likelihood function is that species abun- 
dance distribution follows a beta distribution. The distribution of real-world 
species abundance may not follow any theoretic distribution. To adjust for the 
misclassification in such a case, misclassification probability or a double sam- 
pling scheme is used. The following methods are adopted from Viana (1994) and 
Geng (1989). 

Let us consider binomial data first. The extension from binomial to multinomial 
data is straightforward. Let x = (xlt x2) be the observed binomial data subject to 
misclassification. Let p = (p/, p2') and p = (pv p2) be the corresponding observed 
and true probability distributions, respectively, and M be the 2x2 matrix of 
classification error probabilities, so that/»' = Mp, or 

(36) Pi 

P2 

m, 

m 21 

where m^ is the conditional probability of observed state j given the true state i. 
There are two cases based on the knowledge of the misclassification probability 
matrix M: M is known and M is unknown. We will discuss two methods corre- 
sponding to these two cases. 
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Cases where M is known. When M is known, estimates of true classification prob- 

ability p are obtained from 

(37)    p=M1p 

under the condition that M'1 exists. In practice, we have matrix M and data x = 
(xv x2). We wish to know the expectation and variance of the estimated p from M 
and x. Viana (1994) gave the posterior density of p, given x and M. 

The posterior density f(p I x, M) is a weighted sum of beta density functions given 

by: 

(38)    f(p\x,M) = ^cDrL(P;a + L^), 
re« 

where (0r = WrlYjWi, 

u               u V 

L(p;a) = Pr'p?--xIB(a\ 
B{a) = \\x"^{\-x)a'-xdx, 

and 9? is the set of all matrices r with entries r, „ such that r  = x„ with u=l or 2 u+ u 

If the observed data x, x = (xv..., xk) is a multinomial vector, the posterior prob- 
ability density f(nI x, M) is a weighted sum of Dirichlet density functions (Viana 
1994): 

(39)    f(p\x,M) = Y,(arD(p;cc + X^), 
reSi u 

where cor and Wr are the k-dimension of their definitions given above. 

u 

is the Dirichlet function with the vector of parameters (o: + ^/;,). 

Cases where M is unknown.  When M is unknown, a double sampling scheme is 
used to calculate the posterior means of classification probabilities. When double 
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sampling, we observe individuals by using a cheap but error-prone method. We 

then categorize a random subsample by using a precise but expensive method to 

adjust for misclassification. 

Let us consider a 2 x 2 table with two variables. In the discussion we will use 

notations given by Geng (1989): 

A, B: error-free variables; 

a, b: error-prone variables; 

{m  J: observed frequencies of main sample; 

{nhijk}: those of subsample; 

{phuk}: cell probabilities; 

{philJk}: conditional probabilities given a=j and b=k; 

{am}: parameters of Dirichlet density of {Phijk}. 

In these notations,'+' denotes a summation over the index. Indices h, i, j, and k 

denote variables A, B, a, and b, respectively. Suppose the observations are mul- 

tinomial data and prior density of {Phijk} is a Dirichlet density with parameters 

(40)     D({p^\{ahyk})= ^f    UP^- 
ll1 \ahijk)h,i,j,k 

fiJJJc 

Geng (1989) gave the following the joint posterior density of (p^J and {pmk}, and 

the posterior means, variances and covariance of \pm): 

(41)    f({p++jk}APhlUk}\{nhiß}Arn++ß}) = D({p++jk}\{a++Jk + n++Jk + m++Jk})- 

Y[D{{phAjk}\{ahijk + nhijk}) 

rA1,       • (a++Jk + n++jk + m++Jk )(ahiJk + nhijk) (4z;     phijk — 
(«++++ + "++++ + m++++)(a++Jk + n++jk) 
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(43) Yar(ph..k) =  (a++Jk + n++jk + m^k){a^k + n^k + m++* +1} 
hjk      (a++++ + n++++ + m++++ )(«++++ + n++++ + m++++ +1) 

(cc++jk + n++Jk + \){a++Jk + n++Jk)       h,jk 

Error Budget and Sensitivity Analysis 

Suppose we have a discrete stochastic system without input control 

(44) x^=Akxk + Gkwk 

yk = ck + Hkvk, 

where xk eR",yk &Rp,wk &R8,vk <=Rh; Ak,Gk,Ck, andHkare possible time- 

varying, known matrices of the appropriate dimension, x and y are respectively 
the state space and observation space. The basic random variables {x0,w0, ..,v0,...} 
are all independent and Gaussian with x0 ~ N(0,^0),wk ~ N(0,Q),vk ~ N(0,R). 

The covariance are all known. The available information at time k is 
zk = yk:= (yk,yk^,-—,y0)- The random variable xK, xK+1and yK are jointly Gaus- 

sian. Denote 

Pk\k (** I /) ~ ^(**i*. 2*i*). and 

*k+\\k\Xk+\\y   ) ~  ™\Xk+l\k>2-'k+\\k)' 

**+!!*•= Xk+\ ~ Xk+\\k> 

yk\k-\'-=
E{yk\y ~},and 

Xk\k'~Xk      Xk\k- 

yk\k~v~ yk yk\k-\ 
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The estimation model of the system is 

(44)    xk+mi = Akxm + Lk+] [yM - CMAkxm], 

-"•oio = A)^0' 

^Jt+l|*+I = ("' ~ At+l^/c+l )^i+l|t' 

^0|0 =(-'— A)^o)^o> 

r-i-i 
where  IA. = ZA|i_, C[[Q Zilt_, Qr + HkRHI] 

7" 1-1 £0 = Z0 C0
r[C0 Z0 Q + H0RH0 ] 

The n-step prediction model of the system is 
n-\ 

(45)      xk+nV. = 11 Ak+ixk\k, 
i=0 

j=0 <=0 /=0 

(46)      Z,+n, =f[A.+,-^(fl4+,-)7' + £G,+,-ö^4 

If xt represents the vector of species abundance at time k, the Shannon index can 
be calculated from the vector of species abundance xk. 

Let us rewrite the formula of Shannon index. 

(47) # = -£/>,. xlogQ?,) 
i=i 

where   pt = xik l^\x.k and s is the number of species.  Because H is a nonlinear 
7=1 

function of xK we can calculate its error by the Taylor series expansion method 

as shown below. 

Assuming an exact function f is used to make predictions: 

(48) Y=f(B,X) 
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where Y is a prediction made with the function, X=(XX, X,, ..., Xm) is a vector of 
input variables, and B=(b15 b2, ..., bm) is a vector of known parameters. X is usu- 
ally assumed to be error-free. Now suppose instead of being error-free, the j-th 
component of X, X, has random error e^i.e., xi = x +e), where ^s are independ- 
ently distributed with mean 0 and variance Vie). Then, the predicted Y also has 
error due to the errors of X. This error can be estimated by Taylor series expan- 
sion. 

Denote f(x)= -x x log (x), the first order and second order derivatives of f(x) are 

(49)     ^M = -log(x)-l 
ax 

(50) 
dlf(x)_    1 

d'x 

Applying (49) and (50) in the error propagation models (3) and (4), we have the 
expectation and variance of the Shannon index 

(51)     E(H) = -YdPixlog(pi) + fjE(eir(-log(pi)-l)-\fjE[e^-] 
i=\ i=0 l i=0 Pi 

(52)     Var(H) * 5>r(e,)*(-log(/7,)-l)2 

i=0 

where p, = xiM I JX^e, is the error of p.. 

Common inventory errors in belt transect 

Since 1989, the U.S. Army has delineated permanent core plots on over 50 mili- 
tary installations and training areas in the United States and Germany. The 
standard size of an LCTA permanent plot is 100 x 6 meters (600m2) with a 100-m 
line transect forming the longitudinal axis. The plot inventory is conducted over 
a 2- to 3-month period during the peak of the growing season. The inventory 
consists of four major elements; land use assessment, line transect, belt transect, 
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and wildlife sampling. The belt transect is intended to characterize species com- 
position, density, and height distribution of woody and succulent vegetation. 

The belt transect extends the width of the 100-m line transect. Although the belt 
has a standard size of 6m, the width may be reduced at the field crews discretion 
for high-density species. The field data is subsequently extrapolated to a stan- 
dard 100 x 6m2 plot during data analysis. Subject matter experts have suggested 
the following sources of inventory errors associated with LCTA belt transect 

methods: 
1. Instrument error. The major instrument error is from locating the pole and tape 

positions. The tape may not go straight from one point to the other due to the 
dense plants. The tape may represent different paths for different years of data 

collection. 
2. Observer's error. This error refers to the differences in inventory results made by 

different observers on the same plot. One of the major differences is in the way 
each person counts clumps. Clumps are dense clonal patches of individual stems. 
Some observers count a clump as a single plant, while others may count each 
branch of a clump as a separate plant. 

3. Recording error. A common mistake is made when recording between species 
with similar codes such as ABCD1 and ABCD2. Recording errors result from dif- 
ferent species having very similar codes. Recording errors also occur because 
codes are often truncated to help reduce plot measurement times. 

4. Species recognition error. Species are misidentified due to poor quality of the 
specimen and when the specimen has characteristics that are similar to other 
species. Species recognition errors can result from field crews with varying levels 
of training and experience. 

5. Expansion factor error. Data from reduced belt transects must be extrapolated to 
a standard size plot of 100 x 6m2. Even for the same species in the same plot, dif- 
ferent observers may use different belt widths. The data may also be expanded 
by the wrong factor due to the changes of the expansion factor and a lost record of 
the expansion factor. 

6. Editing error. Editing error refers to errors made in data entry. A common mis- 
take is made when entering the wrong species code into the database. Entering 
the wrong species means creating a "new species." 

A summary of the subject matter experts characterization of LCTA belt transect 
inventory error sources is provided in Table 5. 
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Table 5. Suggested inventory error limits for belt transect. 

Error sources Lower bound Upper bound 

Locating poles and 
tapes 

10 30 

Counting clumps 20 40 

Recording error 0 5 

Species recognition 5 10 

Temporal shift 0 40 

Editing error 0 30 

Expansion factor 0 200 

An example of error budget analysis 

We chose to use plant community type 6 from White Sands Missile Range data 
set (Cao et al. 2000) as an example of error-budget analysis. Community type 6 
covers plots 21, 22, 64, 138, 160, 164, and 167. The species distribution of this 
plant community type is similar to an inverse J-shaped beta distribution with 
alpha 0.5 and beta 3.0. We ran the error-budget model with two types of error 
limits: small input error and large input error. The results are shown in Tables 
6 and 7. Percent bias, percent error, and total error are calculated as: 

„.    „,      index with error - true index    ,_„„. 
Bias % = x 100% 

true index 

_      0/    standard deviation 
Error % = x 100% 

true index 

Total error =  \^iei 

Tables 6 and 7 show the error of the Shannon index with small and large input 
errors for plant community type 6 at White Sands Missile Range. For the cur- 
rent estimate of the Shannon index, the major error is from misclassification. 
Misclassification is mainly due to the misidentification of species, recording spe- 
cies in the wrong code, and mistyping species codes into the data set. The major 
measurement error is due to the method of estimating number of stems in 
clumps of plants. Making more consistent measurements in clumps and quality 
control of data entry can largely reduce these types of errors. For the 10-year 
prediction, the system error and modeling error account for a larger component 
of the total error. With a good understanding of the system and system model, 
the system error usually is small. When more data are collected through contin- 
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ued monitoring, the modeling error can be reduced and ignored if the data set is 
large enough. 

Table 6. Error-budget table of Shannon index with small input errors. 

Error sources Input Error % Current Estimate 10-year Prediction 

Bias % Error % Bias % Error % 

System error 5 0 1.49 0 14.86 

Sampling 10 0 2.97 0 2.97 

Modeling 5 0 1.49 0 14.86 

Measurement 10 0 2.97 0 2.97 

Misclassify 10 -4.69 18.87 -4.69 18.87 

Total 18.7 -4.69 19.45 -4.69 28.85 

Table 7. Error-budget table of Shannon index with large input errors. 

Error Sources Input Error % Current Estimate 10-year Prediction 

Bias % Error % Bias % Error % 

System error 10 0 2.97 0 29.72 

Sampling 50 0 14.86 0 14.86 

Modeling 10 0 2.97 0 29.72 

Measurement 20 0 5.94 0 5.94 

Misclassify 20 -18.42 20.23 -18.42 20.23 

Total 59.16 -18.42 26.13 -18.42 49.31 
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3  Conclusions 

The benefits of an error-budget model can be substantial. First, the error-budget 
model evaluates the statements made from the survey. Given all errors, the er- 
ror-budget model can determine if the statements are valid. A statement is valid 
only if it is within certain error limits. The statement provides little useful in- 
formation if its errors are out of the specified limits. Second, the error-budget 
model guides survey decisions. With error sensitivity analysis, all types of error 
sources can be tested to find their effect on the final statement. Effort can be put 
into survey effort that controls the sources of error. In this manner, maximum 
accuracy can be obtained with minimum cost. Third, the error-budget model 
provides information on error correction. To correct errors, the sources of errors 
must first be known. Errors from different sources may require different correc- 
tion procedures. Using error decomposition, the major causes of errors can be 

determined. 

Error-budget analysis of the plant population model yielded a number of possible 
sources of error. For the initial estimates of the Shannon index, the major error 
was from misclassification. Misclassification is mainly due to misidentified spe- 
cies, recording species with the wrong code, and mistyping species codes into the 
data set. The major measurement error stemmed from the way clumps were 
counted. Over the course of a 10-year prediction, the system error and modeling 
error compounded, causing a significant rise in the total error. 

Uncertainty in near term model predictions was largely determined by errors 
associated with data collection. These types of errors can be largely reduced by 
making consistent measurements and with an effective quality assurance/control 
program. Costs associated with reducing these sources of errors should be 
minimal. However, as model prediction periods increase, modeling and system 
errors become the most important source of uncertainty. These sources of error 
can be reduced only through an intimate knowledge of the ecology and model. As 
more data are collected through the years, the potential exists for modeling error 

to be reduced. 

The error-budget model presented in this report illustrates the potential of using 
error budgets to assist land managers. The error budget provides the user of the 
model with a means to assess management alternatives. The consequences of 
alternative data collection and quality control procedures on model predictions 
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can be objectively assessed. Depending on the time period of concern, the error 
budget identifies sources of error that most affect decision making processes. 

Based on the results of this study, it is recommended that uncertainty analysis 
tools such as error budgets be used more frequently in natural resources model- 
ing efforts. Through the use of error budgets, interpretation of model results and 
subsequent management decisions can more accurately reflect our real under- 
standing of the managed resources. 



ERDC/CERLTR-00-12  |» 

References 

Belcher, D., M. Holdaway, and G. Brand. 1982. A description of STEMS, the stand and tree 
evaluation and modeling system. Gen. Tech. Rep. NC-79, U.S. Forest Service. 

Cao, Xiangchi, George Z. Gertner, Alan B. Anderson, and Bruce A. MacAllister. 2000. Stochastic 
Model of Plant Diversity: Application to White Sands Missile Range. Engineer Research and 
Development Center/Construction Engineering Research Laboratory (ERDC/CERL) Technical 
Report 00-5/ADA374140, February 2000. 

Chen, T.T. 1979. "Log-linear models for categorical data with misclassification and double sam- 
pling." J. Am. Statist. Assoc., 74, 481-488. 

Chen, T.T. 1989. "A review of methods for misclassified categorical data in epidemiology." Statist. 
Medicine, 8,1095-1106. 

Diersing, V.E., R.B. Shaw, and D.J. Tazik. 1992. "US Army Land Condition-Trend Analysis 
(LCTA) Program." Environmental Management 16:405-414. 

Gelb, A., J. Kasper, Jr., R. Nash, Jr., C. Price, and A. Sutherland, Jr. 1974. Applied optimal esti- 
mation. The MIT Press, Cambridge, MA. 374 pp. 

Geng, Z. 1989. "Bayesian Estimation Methods for Categorical Data With Misclassifications." 
Commun. Statist. -Theory Meth., 18(8), pp 2935-2954. 

Gertner, G.Z. 1987. "Approximating precision in simulation projections: an efficient alternative to 
Monte Carlo methods." Forest Service 33: 230-239. 

Gertner, G.Z. 1988. "Alternative methods for improving variance approximation of single tree 
growth and yield projections." In: A.R. Ed, S.R. Shifley, and T.E. Burk (Editors), Proc. Forest 
Growth Modelling and Prediction, Vol II, Gen. Tech, Rep. NC-120, North Central Forest Ex- 
periment Station, USDA Forest Service, pp 739-746. 

Gertner, G.Z. 1990a. "Error budgets: A means of assessing component variability and identifying 
efficient ways to improve model predictive ability." In: R. Dixon, R. Meldahl, G. Ruark, and 
W. Warren (Editors), Forest Growth Process Modeling of Responses to Environmental Stress. 
Timber Press, Portland, OR, p 220. 

Gertner, G.Z. 1990b. "The sensitivity of measurement error in stand volume estimation." Can. J. 
For. Res., 20:800-804. 

Gertner, G.Z. 1991. "Prediction bias and response surface curvature." For. Sei., 37(3):755-765. 



40  ERDC/CERLTR-00-12 

Gertner, G.Z., and M. Kohl. 1992. "An assessment of some nonsampling errors in a national sur- 
vey using an error budget." For. Sei., 38(3):525-538. 

Gertner, G.Z., X. Cao, and H. Zhu. 1995. "A Quality Assessment of a Weibull Based Growth Pro- 
jection System." Forest Ecology and Management, 71:235-250. 

Gotelli, N. 1998. A primer of ecology. Sinauer Associates, Sunderland, MA. 

Magnussen, S., and T.J.B. Boyle. 1995. "Estimating sample size for inference about the Shannon- 
Weaver and the Simpson indices of species diversity." Forest Ecology and Management, 78:71- 
84. 

Mowrer, H. 1988. "A Monte Carlo comparison of propagated error for two types of growth models." 
In: A.R. Ed, S.R. Shifley, and T.E. Burk (Editors), Proc. Forest Growth Modelling and Predic- 
tion, Vol II. Gen. Tech. Rep. NC-120, North Central Forest Experiment Station, USDA Forest 
Service, pp 778-785. 

Mowrer, H., and W. Frayer. 1986. "Variance propagation in growth and yield projections." Can. 
J. For. Res., 16:1196-1200. 

Shannon, C.E., and W. Weaver. 1949. The Mathematical Theory of Communication. University of 
Illinois Press, Urbana, IL. 

Tenebein, A. 1979. "A double sampling scheme for estimating binomial data with misclassifica- 
tion." J. Am. Statist. Assoc, 65, 1350-1361. 

Viana, M. 1994. "Bayesian Small-sample Estimation of Misclassified Multinomial Data." Biomet- 
rics, 50, pp 237-243. 

York, J.C. 1992. "Bayesian methods for the analysis of misclassified or incomplete multivariate 
discrete data." Ph.D. dissertation, Department of Statistics, University of Washington, Seat- 
tle, WA. 



ERDC/CERLTR-00-12  41 

Distribution 

Chief of Engineers 
ATTN: CEHEC-IM-LH (2) 
ATTN: HECSA Mailroom (2) 
ATTN: CECC-R 
ATTN: CERD-L 
ATTN: CERD-M 

SERDP (5) 

ACS(IM) 
ATTN: DAIM-ED-N (2) 

Defense Tech Info Center 22304 
ATTN: DTIC-0(2) 

16 
11/96 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding 
this burden estimate or any other aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

April 2000 
3. REPORT TYPE AND DATES COVERED 

Final 
4.    TITLE AND SUBTITLE 

Errors in Environmental Assessments: An Error-Budget Model for Plant Populations 

6.    AUTHOR(S) 
Xiangchi Cao, George Gertner, Bruce MacAllister, and Alan Anderson 

5.    FUNDING NUMBERS 

EE9 
62720 
A896 
CN-T09 
SERDP CS-1096 

7.    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Engineer Research and Development Center 
Construction Engineering Research Laboratory (ERDC/CERL) 
P.O. Box 9005 
Champaign, IL 61826-9005 

8.    PEFORMING ORGANIZATION 
REPORT NUMBER 

ERDC/CERL TR-00-12 

SPONSORING / MONITORING AGENCY NAME'S) AND ADDRESSEES) 

Strategic Environmental Research and 
Development Program 
ATTN: SERDP 
901 N Stuart St., Suite 303 
Arlington, VA 22203-1853 

Headquarters, Department of the Army 
ATTN: DAIM-ED-N 
Assist Chief of Staff (Installation Mgmt) 
600 Army Pentagon 
Washington, DC 20310-0600 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

9.    SUPPLEMENTARY NOTES 

Copies are available from the National Technical Information Service, 5385 Port Royal Road, Springfield, VA 22161 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The assumption that a data set used for any mathematical or computer modeling is error-free is an underlying premise of theoretical 
modeling. However, the assumptions of error-free data and models usually do not hold true in the real world. Error is a natural property of 
surveys and modeling. Consequently, error should be taken into account when developing any type of model. The goal of this project is to 
create an error-budget model for a population dynamics model of plant communities. Once developed, this error-budget model can in turn 
be used for a number of other purposes such as data correction, model evaluation, quality control, and management decisionmaking. 

14. SUBJECT TERMS 

environmental assessment plant communities 
Land Condition Trends Analysis (LCTA)       data management 
Strategic Environmental Research and Development Program (SERDP) 

natural resources management 
modeling 

15. NUMBER OF PAGES 

42 
16.  PRICE CODE 

17.  SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20.  LIMITATION OF 
ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std 239-18 
298-102 


